Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399857

RESUMO

Three-dimensional (3D) hydrogels provide tissue-like complexities and allow for the spatial orientation of cells, leading to more realistic cellular responses in pathophysiological environments. There is a growing interest in developing multifunctional hydrogels using ternary mixtures for biomedical applications. This study examined the biocompatibility and suitability of human auricular chondrocytes from microtia cultured onto steam-sterilized 3D Chitosan/Gelatin/Poly(Vinyl Alcohol) (CS/Gel/PVA) hydrogels as scaffolds for tissue engineering applications. Hydrogels were prepared in a polymer ratio (1:1:1) through freezing/thawing and freeze-drying and were sterilized by autoclaving. The macrostructure of the resulting hydrogels was investigated by scanning electron microscopy (SEM), showing a heterogeneous macroporous structure with a pore size between 50 and 500 µm. Fourier-transform infrared (FTIR) spectra showed that the three polymers interacted through hydrogen bonding between the amino and hydroxyl moieties. The profile of amino acids present in the gelatin and the hydrogel was determined by ultra-performance liquid chromatography (UPLC), suggesting that the majority of amino acids interacted during the formation of the hydrogel. The cytocompatibility, viability, cell growth and formation of extracellular matrix (ECM) proteins were evaluated to demonstrate the suitability and functionality of the 3D hydrogels for the culture of auricular chondrocytes. The cytocompatibility of the 3D hydrogels was confirmed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reaching 100% viability after 72 h. Chondrocyte viability showed a high affinity of chondrocytes for the hydrogel after 14 days, using the Live/Dead assay. The chondrocyte attachment onto the 3D hydrogels and the formation of an ECM were observed using SEM. Immunofluorescence confirmed the expression of elastin, aggrecan and type II collagen, three of the main components found in an elastic cartilage extracellular matrix. These results demonstrate the suitability and functionality of a CS/Gel/PVA hydrogel as a 3D support for the auricular chondrocytes culture, suggesting that these hydrogels are a potential biomaterial for cartilage tissue engineering applications, aimed at the regeneration of elastic cartilage.

2.
Cell Tissue Bank ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038782

RESUMO

The absence of ears in children is a global problem. An implant made of costal cartilage is the standard procedure for ear reconstruction; however, side effects such as pneumothorax, loss of thoracic cage shape, and respiratory complications have been documented. Three-dimensional (3D) printing allows the generation of biocompatible scaffolds that mimic the shape, mechanical strength, and architecture of the native extracellular matrix necessary to promote new elastic cartilage formation. We report the potential use of a 3D-bioprinted poly-ε-caprolactone (3D-PCL) auricle-shaped framework seeded with remaining human microtia chondrocytes for the development of elastic cartilage for autologous microtia ear reconstruction. An in vivo assay of the neo-tissue formed revealed the generation of a 3D pinna-shaped neo-tissue, and confirmed the formation of elastic cartilage by the presence of type II collagen and elastin with histological features and a protein composition consistent with normal elastic cartilage. According to our results, a combination of 3D-PCL auricle frameworks and autologous microtia remnant tissue generates a suitable pinna structure for autologous ear reconstruction.

3.
Polymers (Basel) ; 15(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835986

RESUMO

Cross-linked polymer blends from natural compounds, namely gelatin (Gel), chitosan (CS), and synthetic poly (vinyl alcohol) (PVA), have received increasing scrutiny because of their versatility, biocompatibility, and ease of use for tissue engineering. Previously, Gel/CS/PVA [1:1:1] hydrogel produced via the freeze-drying process presented enhanced mechanical properties. This study aimed to investigate the biocompatibility and chondrogenic potential of a steam-sterilized Gel/CS/PVA hydrogel using differentiation of human adipose-derived mesenchymal stromal cells (AD-hMSC) and cartilage marker expression. AD-hMSC displayed fibroblast-like morphology, 90% viability, and 69% proliferative potential. Mesenchymal profiles CD73 (98.3%), CD90 (98.6%), CD105 (97.0%), CD34 (1.11%), CD45 (0.27%), HLA-DR (0.24%); as well as multilineage potential, were confirmed. Chondrogenic differentiation of AD-hMSC in monolayer revealed the formation of cartilaginous nodules composed of glycosaminoglycans after 21 days. Compared to nonstimulated cells, hMSC-derived chondrocytes shifted the expression of CD49a from 2.82% to 40.6%, CD49e from 51.4% to 92.2%, CD54 from 9.66 to 37.2%, and CD151 from 45.1% to 75.8%. When cultured onto Gel/CS/PVA hydrogel during chondrogenic stimulation, AD-hMSC changed to polygonal morphology, and chondrogenic nodules increased by day 15, six days earlier than monolayer-differentiated cells. SEM analysis showed that hMSC-derived chondrocytes adhered to the surface with extended filopodia and abundant ECM formation. Chondrogenic nodules were positive for aggrecan and type II collagen, two of the most abundant components in cartilage. This study supports the biocompatibility of AD-hMSC onto steam-sterilized GE/CS/PVA hydrogels and its improved potential for chondrocyte differentiation. Hydrogel properties were not altered after steam sterilization, which is relevant for biosafety and biomedical purposes.

4.
Pharmaceutics ; 15(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631319

RESUMO

Radiosterilized pig skin (RPS) has been used as a dressing for burns since the 1980s. Its similarity to human skin in terms of the extracellular matrix (ECM) allows the attachment of mesenchymal stem cells, making it ideal as a scaffold to create cellularized constructs. The use of silver nanoparticles (AgNPs) has been proven to be an appropriate alternative to the use of antibiotics and a potential solution against multidrug-resistant bacteria. RPS can be impregnated with AgNPs to develop nanomaterials capable of preventing wound infections. The main goal of this study was to assess the use of RPS as a scaffold for autologous fibroblasts (Fb), keratinocytes (Kc), and mesenchymal stem cells (MSC) in the treatment of second-degree burns (SDB). Additionally, independent RPS samples were impregnated with AgNPs to enhance their properties and further develop an antibacterial dressing that was initially tested using a burn mouse model. This protocol was approved by the Research and Ethics Committee of the INRLGII (INR 20/19 AC). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis of the synthesized AgNPs showed an average size of 10 nm and rounded morphology. Minimum inhibitory concentrations (MIC) and Kirby-Bauer assays indicated that AgNPs (in solution at a concentration of 125 ppm) exhibit antimicrobial activity against the planktonic form of S. aureus isolated from burned patients; moreover, a log reduction of 1.74 ± 0.24 was achieved against biofilm formation. The nanomaterial developed with RPS impregnated with AgNPs solution at 125 ppm (RPS-AgNPs125) facilitated wound healing in a burn mouse model and enhanced extracellular matrix (ECM) deposition, as analyzed by Masson's staining in histological samples. No silver was detected by energy-dispersive X-ray spectroscopy (EDS) in the skin, and neither by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in different organs of the mouse burn model. Calcein/ethidium homodimer (EthD-1), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), and scanning electron microscopy (SEM) analysis demonstrated that Fb, Kc, and MSC could attach to RPS with over 95% cell viability. Kc were capable of releasing FGF at 0.5 pg above control levels, as analyzed by ELISA assays. An autologous RPS-Fb-Kc construct was implanted in a patient with SDB and compared to an autologous skin graft. The patient recovery was assessed seven days post-implantation, and the patient was followed up at one, two, and three months after the implantation, exhibiting favorable recovery compared to the gold standard, as measured by the cutometer. In conclusion, RPS effectively can be used as a scaffold for the culture of Fb, Kc, and MSC, facilitating the development of a cellularized construct that enhances wound healing in burn patients.

5.
Int. arch. otorhinolaryngol. (Impr.) ; 27(2): 342-350, April-June 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1440229

RESUMO

Abstract Introduction Acquired tracheomalacia (ATM) is characterized by a loss of structural strength of the tracheal framework, resulting in airway collapse during breathing. Near half of the patients undergoing prolonged invasive mechanical ventilation will suffer tracheal lesions. Treatment for ATM includes external splinting with rib grafts, prosthetic materials, and tracheal resection. Failure in the use of prosthetic materials has made reconsidering natural origin scaffolds and tissue engineering as a suitable alternative. Objective To restore adequate airway patency in an ovine model with surgicallyinduced ATM employing a tissue-engineered extraluminal tracheal splint (TE-ETS). Methods In the present prospective pilot study, tracheal rings were partially resected to induce airway collapse in 16 Suffolk sheep (Ovis aries). The TE-ETS was developed with autologous mesenchymal-derived chondrocytes and allogenic decellularized tracheal segments and was implanted above debilitated tracheal rings. The animals were followed-up at 8, 12, and 16 weeks and at 1-year postinsertion. Flexible tracheoscopies were performed at each stage. After sacrifice, a histopathological study of the trachea and the splint were performed. Results The TE-ETS prevented airway collapse for 16 weeks and up to 1-year postinsertion. Tracheoscopies revealed a noncollapsing airway during inspiration. Histopathological analyses showed the organization of mesenchymal-derived chondrocytes in lacunae, the proliferation of blood vessels, and recovery of epithelial tissue subjacent to the splint. Splints without autologous cells did not prevent airway collapse. Conclusion It is possible to treat acquired tracheomalacia with TE-ETS without further surgical removal since it undergoes physiological degradation. The present study supports the development of tissue-engineered tracheal substitutes for airway disease.

6.
Int Arch Otorhinolaryngol ; 27(2): e342-e350, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37125371

RESUMO

Introduction Acquired tracheomalacia (ATM) is characterized by a loss of structural strength of the tracheal framework, resulting in airway collapse during breathing. Near half of the patients undergoing prolonged invasive mechanical ventilation will suffer tracheal lesions. Treatment for ATM includes external splinting with rib grafts, prosthetic materials, and tracheal resection. Failure in the use of prosthetic materials has made reconsidering natural origin scaffolds and tissue engineering as a suitable alternative. Objective To restore adequate airway patency in an ovine model with surgically-induced ATM employing a tissue-engineered extraluminal tracheal splint (TE-ETS). Methods In the present prospective pilot study, tracheal rings were partially resected to induce airway collapse in 16 Suffolk sheep ( Ovis aries ). The TE-ETS was developed with autologous mesenchymal-derived chondrocytes and allogenic decellularized tracheal segments and was implanted above debilitated tracheal rings. The animals were followed-up at 8, 12, and 16 weeks and at 1-year postinsertion. Flexible tracheoscopies were performed at each stage. After sacrifice, a histopathological study of the trachea and the splint were performed. Results The TE-ETS prevented airway collapse for 16 weeks and up to 1-year postinsertion. Tracheoscopies revealed a noncollapsing airway during inspiration. Histopathological analyses showed the organization of mesenchymal-derived chondrocytes in lacunae, the proliferation of blood vessels, and recovery of epithelial tissue subjacent to the splint. Splints without autologous cells did not prevent airway collapse. Conclusion It is possible to treat acquired tracheomalacia with TE-ETS without further surgical removal since it undergoes physiological degradation. The present study supports the development of tissue-engineered tracheal substitutes for airway disease.

7.
Carbohydr Polym ; 270: 117916, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364636

RESUMO

A novel brush-like poly(2-aminoethyl methacrylate) (PAEMA) was grafted onto chitosan (CS) through gamma radiation-induced polymerization. The copolymer (CS-g-PAEMA) was used to prepare a sodium acetate leached poly(urethane-urea) scaffold. The above derivatives were developed, synthesized, and characterized to meet the specific characteristics of biomaterials. The results revealed that this method is an easy and successful route for grafting PAEMA onto CS. The feasibility of preparing a CS-g-PAEMA polyurethane foam was confirmed by mechanical, morphometric, spectroscopic, and cytotoxic studies. The scaffold showed high biocompatibility both in vitro and in vivo. The first experiment proved that CS-based polyurethane efficiently allows the dynamic culturing of human fibroblast cells. Additionally, an in vivo study in a murine model indicated a complete integration of the scaffold to surrounding subcutaneous tissue as supported by the histological and histochemical assessments. The aforementioned results support the use of CS-g-PAEMA poly(saccharide-urethane) as a model of in vitro-engineered skin.


Assuntos
Quitosana/química , Metacrilatos/química , Polímeros/química , Poliuretanos/química , Engenharia Tecidual/métodos , Tecidos Suporte/química , Animais , Materiais Biocompatíveis/química , Fibroblastos/citologia , Raios gama , Humanos , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Polimerização , Pele/citologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
8.
Mater Sci Eng C Mater Biol Appl ; 116: 111176, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806310

RESUMO

This study aimed at investigating the synthesis, characterization, and search for a biotechnological application proposal for poly [(R)-3-hydroxybutyric acid] (PHB) grafted with the n-hydroxyethyl acrylamide (HEAA) monomer. The novel copolymer was prepared by 60Co gamma radiation-induced-graft polymerization. The effect of different solvents in the graft polymerization; the degree of grafting, crystallinity, and hydrophilicity; the morphology and the thermal properties were evaluated. The polyurethane fabricated from the grafted PHB was suggested as a scaffold. The enzymatic degradation behavior and the spectroscopic, morphological, mechanical, and biological properties of the composites were assessed. According to the results, the successful grafting of HEAA onto PHB was verified. The grafting was significantly affected by the type of solvent employed. A decreased crystallinity and increased hydrophilicity of the graft copolymer, concerning the PHB, was found. An increased roughness was observed in the morphology of the polymer after grafting. The thermodynamic parameters, except for the glass transition temperature, also decreased for the synthetic biopolymer. The intended use of these scaffolds for skin tissue engineering was supported by a proper degradability and degree of porosity, improved mechanical properties, the optimal culture of human fibroblasts, and its transfection with a plasmid vector containing an enhanced green fluorescent protein.


Assuntos
Poliuretanos , Engenharia Tecidual , Ácido 3-Hidroxibutírico , Acrilamida , Raios gama , Humanos , Hidroxibutiratos , Poliésteres , Proibitinas , Tecidos Suporte
9.
Electron. j. biotechnol ; 41: 81-87, sept. 2019. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1087242

RESUMO

Background: The search for innovative anti-tubercular agents has received increasing attention in tuberculosis chemotherapy because Mycobacterium tuberculosis infection has steadily increased over the years. This underlines the necessity for new methods of preparation for polymer-drug adducts to treat this important infectious disease. The use of poly(ethylene glycol)(PEG) is an alternative producing anti-tubercular derivatives. However, it is not yet known whether PEGylated isonicotinylhydrazide conjugates obtained by direct links with PEG are useful for therapeutic applications. Results: Here, we synthesized a PEGylated isoniazid (PEG-g-INH or PEG­INH) by gamma radiation-induced polymerization, for the first time. The new prodrugs were characterized using Raman and UV/Vis spectrometry. The mechanism of PEGylated INH synthesis was proposed. The in vitro evaluation of a PEGylated isonicotinylhydrazide macromolecular prodrug was also carried out. The results indicated that PEG­INH inhibited the bacterial growth above 95% as compared with INH, which showed a lower value (80%) at a concentration of 0.25 µM. Similar trends are observed for 0.1, 1, and 5 µM. Conclusions: In summary, the research suggests that it is possible to covalently attach the PEG onto INH by the proposed method and to obtain a slow-acting isoniazid derivative with little toxicity in vitro and higher antimycobacterial potency than the neat drug.


Assuntos
Polietilenoglicóis/química , Isoniazida/química , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Polietilenoglicóis/farmacologia , Polímeros , Análise Espectral Raman , Técnicas In Vitro , Pró-Fármacos , Polimerização , Raios gama , Isoniazida/farmacologia , Antituberculosos/farmacologia
10.
J Nanobiotechnology ; 16(1): 2, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321021

RESUMO

BACKGROUND: Treatment of severe or chronic skin wounds is an important challenge facing medicine and a significant health care burden. Proper wound healing is often affected by bacterial infection; where biofilm formation is one of the main risks and particularly problematic because it confers protection to microorganisms against antibiotics. One avenue to prevent bacterial colonization of wounds is the use of silver nanoparticles (AgNPs); which have proved to be effective against non-multidrug-resistant and multidrug-resistant bacteria. In addition, the use of mesenchymal stem cells (MSC) is an excellent option to improve wound healing due to their capability for differentiation and release of relevant growth factors. Finally, radiosterilized pig skin (RPS) is a biomatrix successfully used as wound dressing to avoid massive water loss, which represents an excellent carrier to deliver MSC into wound beds. Together, AgNPs, RPS and MSC represent a potential dressing to control massive water loss, prevent bacterial infection and enhance skin regeneration; three essential processes for appropriate wound healing with minimum scaring. RESULTS: We synthesized stable 10 nm-diameter spherical AgNPs that showed 21- and 16-fold increase in bacteria growth inhibition (in comparison to antibiotics) against clinical strains Staphylococcus aureus and Stenotrophomonas maltophilia, respectively. RPS samples were impregnated with different AgNPs suspensions to develop RPS-AgNPs nanocomposites with different AgNPs concentrations. Nanocomposites showed inhibition zones, in Kirby-Bauer assay, against both clinical bacteria tested. Nanocomposites also displayed antibiofilm properties against S. aureus and S. maltophilia from RPS samples impregnated with 250 and 1000 ppm AgNPs suspensions, respectively. MSC were isolated from adipose tissue and seeded on nanocomposites; cells survived on nanocomposites impregnated with up to 250 ppm AgNPs suspensions, showing 35% reduction in cell viability, in comparison to cells on RPS. Cells on nanocomposites proliferated with culture days, although the number of MSC on nanocomposites at 24 h of culture was lower than that on RPS. CONCLUSIONS: AgNPs with better bactericide activity than antibiotics were synthesized. RPS-AgNPs nanocomposites impregnated with 125 and 250 ppm AgNPs suspensions decreased bacterial growth, decreased biofilm formation and were permissive for survival and proliferation of MSC; constituting promising multi-functional dressings for successful treatment of skin wounds.


Assuntos
Bandagens , Biofilmes/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Nanocompostos/química , Prata/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Soluções , Esterilização , Sus scrofa
12.
Mater Sci Eng C Mater Biol Appl ; 76: 417-424, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482545

RESUMO

The poly(gallic acid), produced by laccase-mediated oxidation of gallic acid in aqueous media (pH5.5) to attain a novel material with well-defined molecular structure and high water solubility (500mg/mL at 25°C), has been investigated to understand its potential biological activities. In this regard, a biomedical approach based on cytoprotective effect on human fibroblast cells exposed to UV-irradiation in the presence of the polymer has been demonstrated. The results also shows that 200µg/mL of poly(gallic acid) inhibits the growth and migration of dermal fibroblasts and cancer cell lines without affecting cell viability. Poly(gallic acid) pretreatment with 10µg/mL protects dermal fibroblasts from UV induced cell death and additionally, the cytoprotective effect reduce ROS presence in the cells. This property can be correlated with the antioxidant power (IC50 of 23.5µg/mL) of this novel material, which was ascertained by electronic paramagnetic resonance spectroscopy and spectrophotometrically. Additionally, the antimicrobial activity of this material was corroborated with the inhibition of Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 29212) strains (MIC=400mg/mL) common bacteria found in hospitals.


Assuntos
Fibroblastos , Antioxidantes , Ácido Gálico , Humanos , Staphylococcus aureus , Raios Ultravioleta
13.
ASAIO J ; 61(6): 718-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26418201

RESUMO

Human adipose-derived mesenchymal stem cells (hADMSCs) are believed to be potential key factors for starting the regenerative process after tissue injury. However, an efficient method of delivering these regenerative cells to an external wound site is still lacking. Human amnion and pig skin have long been used as skin wound dressings for the treatment of burns and other skin lesions. Herein, we present the generation of two constructs using these two biomaterials as effective scaffolds for the culture of hADMSCs. It was found that hADMSCs seeded onto radiosterilized human amnion and pig skin are viable and proliferate. These cells are able to migrate over these scaffolds as demonstrated by using time-lapse microscopy. In addition, the scaffolds induce hADMSCs to secrete interleukin-10, an important negative regulator of inflammation, and interleukin-1ß, a proinflammatory protein. The interplay between these two proteins has been proven to be vital for a balanced restoration of all necessary tissues. Thus, radiosterilized human amnion and pig skin are likely suitable scaffolds for delivery of hADMSCs transplants that could promote tissue regeneration in skin injuries like patients with burn injuries.


Assuntos
Âmnio/fisiologia , Bandagens , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Pele/metabolismo , Cicatrização/fisiologia , Tecido Adiposo/citologia , Animais , Materiais Biocompatíveis , Técnicas de Cultura de Células , Células Cultivadas , Humanos , Interleucina-10/biossíntese , Interleucina-1beta/biossíntese , Suínos , Tecidos Suporte , Ferimentos e Lesões/terapia
14.
Int. j. morphol ; 32(4): 1347-1356, Dec. 2014. ilus
Artigo em Inglês | LILACS | ID: lil-734682

RESUMO

Tissue engineering (TE) has become an alternative for auricular reconstruction based on the combination of cells, molecular signals and biomaterials. Scaffolds are biomaterials that provide structural support for cell attachment and subsequent tissue development. Ideally, a scaffold should have characteristics such as biocompatibility and bioactivity to adequate support cell functions. Our purpose was to evaluate biocompatibility of microtic auricular chondrocytes seeded onto a chitosan-polyvinyl alcohol-epichlorohydrin (CS-PVA-ECH) hydrogel to propose this material as a scaffold for tissue engineering application. After being cultured onto CS-PVA-ECH hydrogels, auricular chondrocytes viability was up to 81%. SEM analysis showed cell attachment and extracellular matrix formation that was confirmed by IF detection of type II collagen and elastin, the main constituents of elastic cartilage. Expression of elastic cartilage molecular markers during in vitro expansion and during culture onto hydrogels allowed confirming auricular chondrocyte phenotype. In vivo assay of tissue formation revealed generation of neotissues with similar physical characteristics and protein composition to those found in elastic cartilage. According to our results, biocompatibility of the CS-PVA-ECH hydrogel makes it a suitable scaffold for tissue engineering application aimed to elastic cartilage regeneration.


La ingeniería de tejidos (TE) es una alternativa para la reconstrucción auricular basada en la combinación de células, señales moleculares y biomateriales. Los andamios fabricados con biomateriales brindan un soporte estructural que favorece la adhesión cellular y el desarrollo del tejido. Un andamio debe poseer características como biocompatibilidad y bioactividad para soportar adecuadamente funciones celulares. Nuestro objetivo fue evaluar la biocompatibilidad de condrocitos auriculares de microtia cultivados sobre un hidrogel a base de quitosano-alcohol polivinílico-epiclorhidrina (CS-PVA-ECH) y proponerlo como andamio con aplicaciones en ingeniería de tejidos. La viabilidad de los condrocitos auriculares es superior al 81% después de ser cultivados sobre el hidrogel. El análisis por SEM reveló la unión celular y formación de matriz extracellular sobre el hidrogel; confirmada mediante detección por IF de colágena tipo II y elastina. La expresión de marcadores moleculares durante la expansión in vitro y el cultivo sobre los hidrogeles confirmaron el fenotipo condral. El ensayo de formación de tejido in vivo demostró la generación de neotejidos con características físicas y composición similar al cartílago elástico. Nuestros resultados indican que la biocompatibilidad del hidrogel de CS-PVA-ECH lo hace un andamio adecuado para aplicaciones en ingeniería de tejidos enfocadas a regeneración de cartílago elástico.


Assuntos
Humanos , Condrócitos/citologia , Engenharia Tecidual/métodos , Quitosana/química , Cartilagem da Orelha/citologia , Polivinil/química , Materiais Biocompatíveis , Imuno-Histoquímica , Técnicas de Cultura de Células , Condrócitos/metabolismo , Hidrogéis , Epicloroidrina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...